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ABSTRACT: Methods of explainable artificial intelligence (XAI) are used in geoscientific applications to gain insights
into the decision-making strategy of neural networks (NNs), highlighting which features in the input contribute the most to
a NN prediction. Here, we discuss our “lesson learned” that the task of attributing a prediction to the input does not have
a single solution. Instead, the attribution results depend greatly on the considered baseline that the XAI method utilizes}a
fact that has been overlooked in the geoscientific literature. The baseline is a reference point to which the prediction is
compared so that the prediction can be understood. This baseline can be chosen by the user or is set by construction in the
method’s algorithm}often without the user being aware of that choice. We highlight that different baselines can lead to
different insights for different science questions and, thus, should be chosen accordingly. To illustrate the impact of the
baseline, we use a large ensemble of historical and future climate simulations forced with the shared socioeconomic path-
way 3-7.0 (SSP3-7.0) scenario and train a fully connected NN to predict the ensemble- and global-mean temperature (i.e.,
the forced global warming signal) given an annual temperature map from an individual ensemble member. We then use
various XAI methods and different baselines to attribute the network predictions to the input. We show that attribu-
tions differ substantially when considering different baselines, because they correspond to answering different science
questions. We conclude by discussing important implications and considerations about the use of baselines in XAI
research.

SIGNIFICANCE STATEMENT: In recent years, methods of explainable artificial intelligence (XAI) have found great
application in geoscientific applications, because they can be used to attribute the predictions of neural networks (NNs) to
the input and interpret them physically. Here, we highlight that the attributions}and the physical interpretation}depend
greatly on the choice of the baseline}a fact that has been overlooked in the geoscientific literature. We illustrate this
dependence for a specific climate task, in which a NN is trained to predict the ensemble- and global-mean temperature
(i.e., the forced global warming signal) given an annual temperature map from an individual ensemble member. We show
that attributions differ substantially when considering different baselines, because they correspond to answering different
science questions.
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1. Introduction

Explainable artificial intelligence (XAI) aims to provide in-
sights about the decision-making process of AI models and
has been increasingly applied to the geosciences (e.g., Toms
et al. 2021; Ebert-Uphoff and Hilburn 2020; Hilburn et al.
2021; Barnes et al. 2019, 2020; Mayer and Barnes 2021; Keys
et al. 2021; Sonnewald and Lguensat 2021). XAI methods
show promising results in calibrating model trust and assisting
in learning new science (see for example, McGovern et al.
2019; Toms et al. 2020; Sonnewald and Lguensat 2021; Clare
et al. 2022; Mamalakis et al. 2022a). A popular subcategory of
XAI is the so-called local attribution methods, which compute
the attribution of a model’s prediction to the input variables

(also referred to as “input features”). The final product typically
comes in the form of a heat map in the shape of the original
input. Because of the complex architecture of state-of-the-art
AI models [e.g., neural networks (NNs)], the “attribution task”
can be challenging, and many XAI methods have been shown to
not honor desired properties (e.g., the so-called completeness prop-
erty, input invariance property, etc.; see details in Kindermans
et al. 2017; Ancona et al. 2018, 2019; Rudin 2019; Dombrowski
et al. 2020). Intercomparison studies have shown that the faithful-
ness of the attributions (with respect to the network’s decision-
making process) and their comprehensibility (the degree to which
they can be understood by the user) depend on the prediction
setting and the model architecture, and that no XAImethod likely
exists that maximizes both for any application (Mamalakis et al.
2022b,c).

Apart from the issue of the fidelity of the methods, another
very important aspect of the attribution task is that one needsCorresponding author: A. Mamalakis, amamalak@colostate.edu
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to define the baseline that the attribution is calculated for,
that is, the baseline is the reference point to which the predic-
tion is compared so it can be understood. Without having de-
fined a baseline, the attribution task cannot be solved}it is
an ill-defined task. Defining a baseline is necessary not only
when explaining a complex AI model, but also for explaining
very simple models: thus, defining a baseline is tied to the at-
tribution task itself and it is necessary independently from
what model or what type of XAI method (model agnostic ver-
sus model specific) is being used. To illustrate the above, let
us consider the simple case of a linear model with no constant
term: y5 f (x)5+iwixi, and let us suppose that we want to at-
tribute a prediction yn to the input. A trivial solution to the
attribution task for this case seems to be that any input fea-
ture xi contributes wixi,n to the prediction yn. However, this is
a correct attribution rule only if we assume a baseline x̂ 5 0.
Thus, even in cases in which the attribution task seems to
have exactly one trivial solution, this solution corresponds to
a baseline that has been assumed implicitly. The complete
way to attribute the prediction yn to the input is to consider
the set of solutions: wi(xi,n 2 x̂i). It can be observed that the
attribution depends on the considered baseline and that the
previous, trivial solution is simply a special case of the com-
plete set of solutions. Another special case that is typically
very informative to scientists is to choose a baseline of the
form x̂ 5 E(x). In this case, the attribution would highlight
those features in the input for which the deviation from the
average state is important for the prediction.

In this paper, our aim is to highlight our lesson learned that
the attribution task is highly dependent on the choice of
baseline}a fact that seems to have been overlooked so far
in applications of XAI to the geosciences. Also, we show by
example how the use of different baselines offers an oppor-
tunity to answer different science questions. To do so, we
use a large ensemble of historical and future climate simula-
tions forced with the shared socioeconomic pathway 3-7.0
(SSP3-7.0) climate change scenario (ensemble of 80 members
from the climate model CESM2; Rodgers et al. 2021) and
train a fully connected NN to predict the ensemble- and
global-mean temperature (i.e., the forced component of the
global mean temperature) given an annual temperature map
from an individual ensemble member. We then use XAI
methods and different baselines to attribute the network pre-
dictions to the input. We show that attributions differ substan-
tially when considering different baselines, as they correspond
to answering different science questions.

In section 2, we provide details about the data, prediction
task, and methods, and in section 3 we present our results.
Section 4 discusses some considerations about the use of base-
lines in XAI research, and in section 5 we provide a summary
of the key points of our study.

2. Data and methods

a. Data

We use yearly mean surface air temperature from the CESM2
Large Ensemble Community project (Rodgers et al. 2021),

spanning the years from 1850 to 2100 (publicly available at
https://www.cesm.ucar.edu/projects/community-projects/LENS2/
data-sets.html). Historical forcing is applied to the climate sys-
tem over the 1850–2014 period, and the SSP3-7.0 climate change
scenario is applied over the 2015–2100 period. We use the out-
put of 80 members bilinearly regridded to a 2.583 2.58 resolution
from an approximate 18 3 18 resolution to reduce dimen-
sionality of the prediction task.

b. Prediction task and network architecture

Given a yearly mean temperature map as an input
(10 512 pixels), we train a fully connected NN to predict the
ensemble- and global-mean temperature of the same year as
the input map (see graphic in Fig. 1). This task requires the
NN to recognize the forced signal in the temperature field
(i.e., the signal originating from natural forcings, such as solar
radiation and volcanic eruptions, or anthropogenic forcings,
such as changes in greenhouse gases concentrations, tropo-
spheric aerosols, land use, etc.) so as to estimate the forced
global mean temperature while ignoring any internal vari-
ability signals that may be present in the input [e.g., an active
El Niño–Southern Oscillation (ENSO)]. Thus, the NN needs
to be able to separate the forced temperature response from
that of the internal climate “noise.”

Our network consists of two hidden layers with eight and
five neurons each (with ReLU activation functions) and one
output neuron with no activation. Dropout (with probability
of 0.3) and ridge regularization (with a regularization factor of
0.005) are applied in the input layer to avoid overfitting, and
training is performed using the Adam optimizer (Kingma and
Ba 2017), a batch size of 32, and a learning rate of 0.0001. The
mean square error is used as the loss function during training.
We train on 70 members and test on the remaining 10 members.
The performance of the network is satisfying, with a mean abso-
lute error on the order of 0.0688C for the testing data [and a
coefficient of determination (R2) on the order of 99%].

c. XAI methods

The main goal of the current work is the explanation rather
than the prediction itself. To explain the predictions of the
network we use two local attribution methods, namely, the in-
tegrated gradients (Sundararajan et al. 2017) and deep
Shapely additive explanations (SHAP) (Lundberg and Lee
2017). We have chosen these methods for two main reasons:
(i) Both methods allow the user to define the baseline for
which the attribution is derived, which is the focus of this
work and allows us to gain insights into different science ques-
tions (see Fig. 1). (ii) Both methods satisfy the completeness
property [also referred to as local accuracy in Lundberg and
Lee (2017) or sensitivity-N in Ancona et al. (2018)], which
holds that the feature attributions must add up to the differ-
ence between the NN output at the current sample xn and the
baseline x̂. We briefly describe the two methods below.

1) INTEGRATED GRADIENTS

This method (Sundararajan et al. 2017) is a local attribution
method that builds on the input*gradient method (Shrikumar
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et al. 2016, 2017). Namely, it aims to account for the fact that
in nonlinear problems the gradient is not constant, and thus,
the product of the local gradient with the input might not be a
good approximation of the input’s contribution. The inte-
grated gradients method considers a baseline vector x̂, and
the attribution for feature i and sample n is equal to the prod-
uct of the distance of the input from the baseline with the av-
erage of the gradients at points along the straight-line path
from the baseline to the input:

Ri,n 5 (xi,n 2 x̂i) 3
1
m

+
m

j51

F̂
Xi

∣
∣
∣
∣
∣
Xi5x̂ i1(j/m)(xi,n2x̂ i)

, (1)

where F̂ represents the network and m is the number of steps
in the Riemann approximation.

2) DEEP SHAP

Deep SHAP is a local attribution method that is based on
the use of Shapley values (Shapley 1953) and is specifically de-
signed for neural networks (Lundberg and Lee 2017). The
Shapley values originate from the field of cooperative game
theory and represent the average expected marginal contribu-
tion of each player in a cooperative game, after all possible
combinations of players have been considered (Shapley
1953). Regarding the importance of Shapley values for XAI,
it can be shown (Lundberg and Lee 2017) that across all addi-
tive feature attribution methods (a general class of local attri-
bution methods that unifies many popular XAI methods), the

only method that satisfies all desired properties of local accu-
racy, missingness, and consistency [see Lundberg and Lee
(2017) for details on these properties] emerges when the fea-
ture attributions ui are equal to the Shapley values:

ui 5 +
SMM\{i}

|S|!(|M| 2 |S| 2 1)!
|M| [fS⋃{i}(xS⋃{i}) 2 fS(xS)] (2)

where M is the set of all input features; M\{i} is the set M, but
with the feature xi being withheld; |M| represents the number
of features in M; and the expression fS<{i}(xS<{i}) 2 fS(xS) rep-
resents the net contribution (effect) of the feature xi to the
outcome of the model f, which is calculated as the difference
between the model outcome when the feature xi is present
and when it is withheld. Thus, the Shapley value ui is the
weighted average contribution of the feature xi across all pos-
sible subsets S M M\{i}. Because of computational constraints,
deep SHAP approximates the Shapley values for the entire
network by computing the Shapley values for smaller compo-
nents of the network and propagating them backward until
the input layer is reached [i.e., implementing Eq. (2) recur-
sively]. Deep SHAP may consider different baselines (defined
by the user) with which to replace features xi, when they need
to be withheld.

3. Results

In this section, we focus on attributing a specific prediction
of the NN using different baselines. We choose the 2022

FIG. 1. Schematic representation of the prediction task of the study and of the use of baselines to gain insights into different science questions.
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temperature map from the 80th ensemble member as the input
of interest. The attributions based on the integrated gradients
and the deep SHAP are shown in Fig. 2 for four different base-
lines. Figure 3 shows the difference between the considered in-
put to the NN and the four baselines. We note that for the
considered input, the NN estimates the forced global-mean
temperature to be 15.48C, which is almost identical to the true
ensemble- and global-mean temperature for 2022.

We first consider the baseline of zero input (see Figs. 2a,e
and 3a); this is a very common choice made by scientists for
XAI applications and the default option for many XAI meth-
ods. Reasonably, the NN output that corresponds to a zero in-
put (although such an input was not present in the training or
the testing set) is almost 08C. Thus, with this choice of base-
line, the question that we will gain insight into here is as fol-
lows: “Which patterns in the 2022 map made the network

FIG. 2. Attribution heat maps (8C) derived by the methods (left) integrated gradients and (right) deep SHAP for
the NN prediction for 2022 (80th member), using four different baselines: (a),(e) the zero input; (b),(f) the average
temperature over 1850–80 (from the 80th member); (c),(g) the temperature in 2025 (from the 80th member); and
(d),(h) the average temperature over 2070–2100 (from the 80th member).
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predict the forced global-mean temperature to be 15.48C as
opposed to 08C?” According to both XAI methods (the two
methods provide almost identical results for all of the base-
lines), the features that determined this difference mainly oc-
cur over the zone of 558S–558N and partially over Antarctica.

Thus, this attribution indicates that the NN has learned the
basic concept that the temperature of the globe cannot be 08C
because of the heat stored in the tropics and subtropics origi-
nating from the solar radiation and the greenhouse effect.
Also, note that the majority of the attributions are positive,

FIG. 3. Deviation (8C) of the 2022 surface air temperature from the four baselines used in Fig. 2.
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since all attributions must add up to a positive value of
15.48C; that is, recall that the attributions need to add up to
the difference of the NN output at the current 2022 map
(15.48C) minus the NN output at the baseline (08C).

As a second baseline, we consider the temperature map av-
eraged over the 1850–80 period from the 80th ensemble mem-
ber. The NN output that corresponds to this baseline is
14.18C, and thus the question that we aim to answer here is
the following: “Which patterns in the 2022 map made the net-
work predict the forced global-mean temperature to be
15.48C as opposed to 14.18C?” or, alternatively, “Which re-
gions made 2022 warmer than the period 1850–80 by 1.38C?”
The XAI methods highlight positive attributions mostly over
land and oceanic regions in the midlatitudes and specifically
over the Himalayas, eastern Asia, North and South America,
the Southern Ocean, and the northern Pacific Ocean. The
high latitudes show negligible contribution, despite the high
degree of warming that occurs locally (see Fig. 3b). We hy-
pothesize that this is due to the high internal variability that is
associated with the warming of these regions, and thus, they
may not constitute robust predictors for the NN to determine
the forced global warming.

As a third baseline, we next consider the year 2025 (from
the 80th ensemble member). The NN output for the base-
line is 15.78C; thus, the attributions need to add up to only
15.48 2 15.78C 5 20.38C. Consequently, attributions are of
a lower magnitude in this case. The question answered here is
“which patterns in the 2022 map made the network predict
the forced global-mean temperature to be 15.48C as opposed
to 15.78C?” or alternatively “which regions made 2022 cooler
than 2025 by 0.38C?” The regions of the North Pacific and
Southern Oceans are highlighted the most. We note that the
strong pattern of an active ENSO over the eastern tropical
Pacific in 2025 (see Fig. 3c) is not highlighted by the XAI
methods. This suggests that the network has learned that
ENSO variability constitutes internal variability, thus, it is not an
appropriate predictor of the forced global-mean temperature.

Last, we consider the average temperature over the period
2070–2100 (from the 80th ensemble member) as the baseline.
In this case, we are interested in gaining insights about the
regions that made 2022 cooler than the end of the century.
Both XAI methods highlight the majority of the globe with
negative attribution, since the attributions need to add up
to 15.48 2 188C 5 22.68C. The most important contributors
are shown to be the Himalayas, eastern Asia, North America,
the Southern Ocean, and the northern Pacific Ocean. Similar
to the remarks in the case of the 1850–80 baseline, the high
latitudes are shown to contribute only slightly.

The above results make clear that the attribution task de-
pends substantially on the considered baseline. This is true
both in terms of the magnitude of the attributions, because of
the completeness property (i.e., note the fivefold difference
in the color scale between the top panels and the rest of the
panels in Fig. 2), but also in terms of spatial patterns. For
example, although the Himalayas is shown to be a very impor-
tant region for distinguishing the forced global warming
between the year 2022 and, for example, the 1850–80 period
(see Figs. 2b,f), it is not a strong determining factor in the

case of a zero baseline (see Figs. 2a,e; the same may apply for
other regions, e.g., the Southern Ocean). In contrast, many
regions in the deep tropics that are highlighted in the attribu-
tion when considering a zero baseline are not highlighted for
the other three baselines. This highlights the importance of
explicitly declaring the baseline, to avoid misidentifying or
overlooking predictive (or causal) factors. At the same time,
the above results illustrate that the ill-defined nature of the at-
tribution task is beneficial in that different baselines can be
considered to gain insights into different science questions of
varying complexity. After repeating the analysis with a deeper
network (using 12 hidden layers instead of 2), we obtained
very similar results (not shown), which confirms that the base-
line choice affects any attribution task independently from
what model architecture (or type of XAI) is being used.

4. Implications for the use of XAI methods in
geoscientific research

The dependency of the attribution task on the baseline
highlights a few important considerations for the use of XAI
methods in geoscience. First, it means that when comparing
explanations using a variety of attribution methods, one must
ensure that the same baseline is used for every method to
avoid introducing artificial intermethod discrepancies that
might be misinterpreted as intermethod variability. For exam-
ple, in Fig. 2, we show that the considered methods integrated
gradients and deep SHAP provide almost identical results for
the same baseline (likely because of the simple, semilinear
nature of the prediction task). However, it would be incorrect
to compare their results for different baselines (e.g., comparing
Fig. 2a with Fig. 2f), as they refer to different questions. We
highlight this since in current geoscientific research, the baseline
is typically not discussed at all when XAI attribution methods
are applied.

Second, one needs to keep in mind that although many
XAI methods allow the user to choose the baseline (e.g., as
the ones used herein), some XAI methods assume specific
types of baselines by construction, thus they should be used
with caution. For example, unless extra modifications are im-
plemented (Letzgus et al. 2021), the methods layerwise rele-
vance propagation (Bach et al. 2015; Samek et al. 2016) and
input*gradient (Shrikumar et al. 2016, 2017) provide attribu-
tions using a zero baseline. This implies that a zero-input
value is automatically assigned a zero attribution, although
the presence of a zero value might be important for the pre-
diction when viewed from a different baseline that might be
of interest (this was discussed as the “ignorant to zero input”
issue in Mamalakis et al. 2022c).

Last, we note that XAI baselines are also very relevant and
impactful in classification settings, but they should be used dif-
ferently than in regression settings. We showed here that, in
regression settings, different baselines form the necessary de-
cision boundaries (i.e., the questions “X as opposed to Y”)
for the user to understand why certain decisions were made.
In classification settings, these decision boundaries are al-
ready existing and predefined by the prediction classes. Thus,
in classification settings, there is less need to consider multiple
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baselines to answer different questions. In fact, for classifica-
tion tasks, a single baseline should suffice. The choice of this
baseline is quite important, and as Sundararajan et al. (2017)
suggested, it should be chosen so that it corresponds to a uni-
form distribution of baseline likelihoods for all classes, or in
simple words, it contains no signal or information. In this way,
the attribution for any class will be a function only of the in-
put, without the presence of artifacts originating from consid-
ering a baseline that is informative (Sundararajan et al. 2017).

5. Summary

In this study, we highlight our “lesson learned” that the attri-
bution task, that is, attributing a model’s certain output to the
corresponding input, does not have a single solution. Rather, the
attributions and their interpretation depend greatly on the choice
of the baseline; an issue often overlooked in the geoscientific lit-
erature. We illustrated this in a climate prediction task, where a
fully connected network was trained to predict the ensemble-
and global-mean temperature of annual temperature maps from
a large ensemble of climate simulations. Our results make clear
that when considering different baselines, attributions differ sub-
stantially both in magnitude and in spatial patterns.

We suggest that the dependence of the attribution task on
the baseline choice is actually beneficial, since we can use dif-
ferent baselines to gain insights on different science questions
of varying complexity. We also highlight that in regression set-
tings, the issue of the baseline needs to be cautiously consid-
ered to avoid misidentifying sources of predictability and/or
artificially introducing intermethod discrepancies in XAI ap-
plications. In classification settings, a single, noninformative
baseline should suffice, since the decision boundaries are pre-
defined by the prediction classes. Nevertheless, in all XAI
applications, the baseline needs to be carefully chosen and
explicitly stated.

Appropriate use and/or experimentation with multiple
baselines will be advantageous for many XAI-pursued goals
in geoscientific applications. These include deciphering the
decision-making process of the network better (e.g., McGovern
et al. 2019; Toms et al. 2020), accelerating the learning of new
science (e.g., Sonnewald and Lguensat 2021; Clare et al. 2022;
Mamalakis et al. 2022a) and potentially helping to identify
problems in the training dataset (Sun et al. 2022).
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